Test Procedure for the NCV47411PAAJGEVB Evaluation Board

The NCV47411 is dual channel adjustable Low Dropout Regulator with:

- Two adjustable output voltages from 3.3 V to 20 V
- Two adjustable current limits up to 150 mA
- Enable inputs with 3.3 V Logic compatible thresholds

Power supplying of the chip is possible from one or two independent sources. INPUT1 must be always supplied and INPUT2 as optional for $\mathbf{V}_{\mathbf{i n} 2}$ supply.

1. Power supplying

a. Power supplying from one source

Connect the test setup as is shown in Figure 1 (See Table 1 with required equipment). Connect power supply to INPUT1 connector $\mathbf{J}_{\mathbf{1}}$ (Power supplying of INPUT2 is not needed).

- $\quad \mathbf{H i}$ _F - Positive Force line
- $\quad \mathbf{H i}$ _S - Positive Sense line
- Lo_F - Negative Force line
- Lo_S - Negative Sense line

Connect $\mathbf{V}_{\text {in2 }}$ pin to INPUT1 via appropriate position of jumper " $\mathbf{V}_{\text {in2 }}$ to IN1 or IN2 connection".
b. Power supplying from two sources

Connect the test setup as is shown in Figure 1 (See Table 1 with required equipment). Connect two power supplies to INPUT1 connector $\mathbf{J}_{\mathbf{1}}$ and to INPUT2 connector $\mathbf{J}_{\mathbf{2}}$, respectively.

- $\quad \mathbf{H i}$ _F - Positive Force line
- $\quad \mathbf{H i}$ _S - Positive Sense line
- Lo_F - Negative Force line
- Lo_S - Negative Sense line

Values of input voltages $\mathbf{V}_{\text {in1 }}$ and $\mathbf{V}_{\text {in2 }}$ can be different. This option is suitable for reducing of power dissipation on chip.
Connect $\mathbf{V}_{\text {in2 }}$ pin to INPUT2 via appropriate position of jumper " $\mathbf{V}_{\text {in2 }}$ to IN1 or IN2 connection".
2. Connect jumpers $\mathbf{J}_{\mathbf{1 0}}-\mathbf{J}_{\mathbf{1 3}}$ for output current limitation from $\mathbf{V}_{\text {out }}$ pin and $\mathbf{J}_{\mathbf{2 0}}-\mathbf{J}_{\mathbf{2 3}}$ for output current limitation from $\mathbf{V}_{\text {out2 }}$ pin.

- $\quad \mathbf{J}_{\mathbf{n} 0}-\mathrm{I}_{\mathrm{LIMn} 0} \sim 10 \mathrm{~mA}$
- $\quad \mathbf{J}_{\mathbf{n} 1}-\mathrm{I}_{\mathrm{LIMn1}} \sim 50 \mathrm{~mA}$
- $\quad \mathbf{J}_{\mathbf{n} 2}-\mathrm{I}_{\mathrm{LIMn} 2} \sim 100 \mathrm{~mA}$
- $\mathbf{J}_{\mathbf{n} 3}-\mathrm{I}_{\mathrm{LIMn} 3}-\mathrm{R}_{\mathrm{CSOn} 3}$ positions available for individual current limit setting by resistor from range 850Ω to $12.75 \mathrm{k} \Omega$

3. Set Input Voltage and turn on Power Supply/Supplies.
4. Enable output of the channel to power the regulated output voltage by connecting the ENABLE pin to corresponding $\mathbf{V}_{\text {in }}$ via jumper. Enabling can be performed by external voltage source as well.
5. Load the outputs by resistive loads connected via jumpers:

- $\mathbf{J}_{5}, \mathbf{J}_{7}-51 \Omega$
- $\mathbf{J}_{6}, \mathbf{J}_{\mathbf{8}}-1 \mathrm{k} \Omega$

External loads can be used instead build-in resistive loads as well.
6. Monitor Output Voltages, given according to Equation 1 .

$$
\begin{equation*}
V_{\text {out_nom_n } n}=1.275\left(1+\frac{R_{n 1}}{R_{n 2}}\right) \tag{eq.1}
\end{equation*}
$$

7. Monitor Current Sense Output voltages on appropriate connector. They should be max 2.55 V in steady state. The CSO voltages are proportional to output currents according to Equation 2.

$$
\begin{equation*}
V_{\text {CSO_n }}=I_{o u t _n}\left(R_{\text {CSO_n }} \times \frac{1}{50}\right) \tag{eq.2}
\end{equation*}
$$

8. Compare your results with measured results in Table 2.

Figure 1. General Test Setup
Table 1: Required Equipment

Equipment	Ranges
Power Supply	$0 \mathrm{~V}-45 \mathrm{~V} / 1 \mathrm{~A}$
Load	$0 \mathrm{~mA}-500 \mathrm{~mA}$
V - meter	$0 \mathrm{~V}-20 \mathrm{~V}$
A - meter	$0 \mathrm{~mA}-500 \mathrm{~mA}$

Figure 2. Top side PCB Layout ($\mathbf{3} \times 3$ inch)

Table 2: Measured Results

Parameter	Test Conditions	Symbol	Value		Unit
			Nominal	Measured	
Output Voltage	$\mathrm{V}_{\text {in }}=13.5 \mathrm{~V}, \mathrm{~V}_{\text {out_nom_n }}=5.02 \mathrm{~V}, \mathrm{I}_{\text {out_n }}=5 \mathrm{~mA}, \mathrm{R}_{\text {CSo_n }}=$ Short to ground	$\mathrm{V}_{\text {out1 }}$	5.02	5.006	V
		$\mathrm{V}_{\text {out2 }}$		5.005	
	$\mathrm{V}_{\text {in }}=13.5 \mathrm{~V}, \mathrm{~V}_{\text {out_nom_n }}=5.02 \mathrm{~V}, \mathrm{I}_{\text {out_n }}=100 \mathrm{~mA}, \mathrm{R}_{\text {Cso_n }}=$ Short to ground	$\mathrm{V}_{\text {out1 }}$		5.005	
		$\mathrm{V}_{\text {out2 }}$		5.005	
Output Current	$\mathrm{V}_{\text {in }}=13.5 \mathrm{~V}, \mathrm{~V}_{\text {out_nom_n }}=5.02 \mathrm{~V}, \mathrm{~V}_{\text {out_n }}=90 \%$ of $\mathrm{V}_{\text {out_nom_n }}, \mathrm{R}_{\text {Cso_n }}=12.7 \mathrm{k} \Omega$	$\mathrm{I}_{\text {out1 }}$	10.04	10.06	mA
		$\mathrm{I}_{\text {out2 }}$		10	
	$\mathrm{V}_{\text {in }}=13.5 \mathrm{~V}, \mathrm{~V}_{\text {out_nom_n }}=5.02 \mathrm{~V}, \mathrm{~V}_{\text {out_n }}=90 \%$ of $\mathrm{V}_{\text {out_nom_n }}, \mathrm{R}_{\text {cso_n }}=2.49 \mathrm{k} \Omega$	$\mathrm{I}_{\text {out1 }}$	51.2	52.47	
		Iout2		52.19	
	$\mathrm{V}_{\text {in }}=13.5 \mathrm{~V}, \mathrm{~V}_{\text {out_nom_n }}=5.02 \mathrm{~V}, \mathrm{~V}_{\text {out_n }}=90 \%$ of $\mathrm{V}_{\text {out_nom_n }}, \mathrm{R}_{\text {cso_n }}=1.2 \mathrm{k} \Omega$	Iout1	106.25	110.28	
		$\mathrm{I}_{\text {out2 }}$		109.95	
Output Current	$\mathrm{V}_{\text {in }}=13.5 \mathrm{~V}, \mathrm{~V}_{\text {out_nom_n }}=5.02 \mathrm{~V}, \mathrm{~V}_{\text {out_n }}=0 \mathrm{~V}, \mathrm{R}_{\text {Cso_n }}=12.7 \mathrm{k} \Omega$	$\mathrm{I}_{\text {out1 }}$	10.04	10.55	mA
		$\mathrm{I}_{\text {out2 }}$		10.49	
	$\mathrm{V}_{\text {in }}=13.5 \mathrm{~V}, \mathrm{~V}_{\text {out_nom_n }}=5.02 \mathrm{~V}, \mathrm{~V}_{\text {out_n }}=0 \mathrm{~V}, \mathrm{R}_{\text {Cso_n }}=2.49 \mathrm{k} \Omega$	$\mathrm{I}_{\text {out1 }}$	51.2	54.44	
		$\mathrm{I}_{\text {out2 }}$		54.17	
	$\mathrm{V}_{\text {in }}=13.5 \mathrm{~V}, \mathrm{~V}_{\text {out_nom_n }}=5.02 \mathrm{~V}, \mathrm{~V}_{\text {out_n }}=0 \mathrm{~V}, \mathrm{R}_{\text {cso_n }}=1.2 \mathrm{k} \Omega$	$\mathrm{I}_{\text {out1 }}$	106.25	115.32	
		$\mathrm{I}_{\text {out2 }}$		114.37	

